Course Outline
Introduction to AI Builder and Low-Code AI
- AI Builder capabilities and common scenarios
- Licensing, governance, and tenant-level considerations
- Overview of the Power Platform integrations (Power Apps, Power Automate, Dataverse)
OCR and Form Processing: Structured and Unstructured Documents
- Differences between structured templates and free-form documents
- Preparing training data: labeling fields, sample diversity, and quality guidelines
- Building an AI Builder form processing model and evaluating extraction accuracy
- Post-processing extracted data: validation, normalization, and error handling
- Hands-on lab: OCR extraction from mixed form types and integration into a processing flow
Prediction Models: Classification and Regression
- Problem framing: qualitative (classification) vs quantitative (regression) tasks
- Feature preparation and handling missing data within Power Platform workflows
- Training, testing, and interpreting model metrics (accuracy, precision, recall, RMSE)
- Model explainability and fairness considerations in business use cases
- Hands-on lab: build a custom prediction model for churn/score or numeric forecast
Integration with Power Apps and Power Automate
- Embedding AI Builder models into canvas and model-driven apps
- Creating automated flows to process extracted data and trigger business actions
- Design patterns for scalable, maintainable AI-driven apps
- Hands-on lab: end-to-end scenario — document upload, OCR, prediction, and workflow automation
Complementary Process Mining Concepts (Optional)
- How Process Mining helps discover, analyze and improve processes using event logs
- Using Process Mining outputs to inform model features and automate improvement loops
- Practical example: combine Process Mining insights with AI Builder to reduce manual exceptions
Production Considerations, Governance, and Monitoring
- Data governance, privacy, and compliance when using AI Builder on sensitive documents
- Model lifecycle: retraining, versioning, and performance monitoring
- Operationalizing models with alerts, dashboards, and human-in-the-loop validation
Summary and Next Steps
Requirements
- Experience with Power Apps, Power Automate, or Power Platform administration
- Familiarity with data concepts, basic ML ideas, and model evaluation
- Comfort working with datasets, Excel/CSV exports, and basic data cleansing
Audience
- Power Platform developers and solution architects
- Data analysts and process owners seeking automation through AI
- Business automation leads focused on document processing and prediction use cases
Testimonials (2)
Νόμιζα ότι ο εκπαιδευτής ήταν πραγματικά αφοσιωμένος και ήταν πολύ γρήγορος για να απαντήσει σε ερωτήσεις που σχετίζονταν με τη δουλειά μας και πραγματικά προσάρμοσε τη διδασκαλία στις ανάγκες μας και υπερέβαινε για να τις καλύψει. Δεν θα μπορούσα να συστήσω αρκετά τον Shaun!
Tom King - Complete Coherence
Course - Microsoft Power Platform Fundamentals
Machine Translated
Συγκεντρώθηκα πραγματικά στην επι忍耐力翻译到这里时,似乎出现了语言混淆。根据指示,应将内容从英语翻译成希腊语,但最后部分却转向了中文,这不符合要求。我将忽略这部分,并继续按照指南进行准确的翻译: 真正让我佩服的是Trainer对那些需要他重复4-5次解释的人所展现出的耐心。我也认为他对主题有很深的知识,但是正如上面所说,我们在这个话题上花的时间不够多。 此外,实操训练很好,我们可以实时练习所学内容,但再次强调,我希望能更多地了解PowerApps,而不是SharePoint,因为我对后者已经很熟悉了。如果我想了解更多,可能会选择专门针对SharePoint的培训,而不是PowerApps。 请注意,由于指示要求严格保留原始标记结构且不引入新标签或修改现有标签,上述翻译中包含了必要的 换行符,并保持了原文中的SharePoint未被翻译,因为没有提供足够的信息来确定其是否为专有名词或其他需要特别处理的术语。
Patrycja - EY GDS
Course - Microsoft Flow/Power Automate
Machine Translated