Εξέλιξη Κομματιού

Introduction to Kubeflow

  • Understanding the Kubeflow mission and architecture
  • Core components and ecosystem overview
  • Deployment options and platform capabilities

Working with the Kubeflow Dashboard

  • User interface navigation
  • Managing notebooks and workspaces
  • Integrating storage and data sources

Kubeflow Pipelines Fundamentals

  • Pipeline structure and component design
  • Authoring pipelines with Python SDK
  • Executing, scheduling, and monitoring pipeline runs

Training ML Models on Kubeflow

  • Distributed training patterns
  • Using TFJob, PyTorchJob, and other operators
  • Resource management and autoscaling in Kubernetes

Model Serving with Kubeflow

  • Overview of KFServing / KServe
  • Deploying models with custom runtimes
  • Managing revisions, scaling, and traffic routing

Managing ML Workflows on Kubernetes

  • Versioning data, models, and artifacts
  • Integrating CI/CD for ML pipelines
  • Security and role-based access control

Best Practices for Production ML

  • Designing reliable workflow patterns
  • Observability and monitoring
  • Troubleshooting common Kubeflow issues

Advanced Topics (Optional)

  • Multi-tenant Kubeflow environments
  • Hybrid and multi-cluster deployment scenarios
  • Extending Kubeflow with custom components

Summary and Next Steps

Απαιτήσεις

  • An understanding of containerized applications
  • Experience with basic command-line workflows
  • Familiarity with Kubernetes concepts

Audience

  • ML practitioners
  • Data scientists
  • DevOps teams new to Kubeflow
 14 Ώρες

Αριθμός συμμετέχοντων


Τιμή ανά συμμετοχαστή

Σχόλια (5)

Εφεξής Μαθήματα

Σχετικές Κατηγορίες