Neural Networks Training Courses

Neural Networks Training Courses

Τα τοπικά μαθήματα κατάρτισης σε Neural Network, καθοδηγούμενα από εκπαιδευτικούς, επιδεικνύουν μέσω της διαδραστικής συζήτησης και της πρακτικής άσκησης πώς να κατασκευάσουν τα Νευρικά Δίκτυα με τη χρήση πολλών εργαλείων και βιβλιοθηκών κυρίως με ανοιχτού κώδικα, καθώς και με τον τρόπο χρήσης της δύναμης του προηγμένου υλικού (GPU) τεχνικές βελτιστοποίησης που περιλαμβάνουν κατανεμημένους υπολογιστές και μεγάλα δεδομένα. Τα μαθήματα του Νευρικού Δικτύου βασίζονται σε δημοφιλείς γλώσσες προγραμματισμού όπως Python, Java, γλώσσα R και ισχυρές βιβλιοθήκες, όπως TensorFlow, Torch, Caffe, Theano και πολλά άλλα. Τα μαθήματα του Νευρικού Δικτύου καλύπτουν τόσο τη θεωρία όσο και την εφαρμογή με τη χρήση πολλών υλοποιήσεων νευρωνικού δικτύου, όπως Νευρωνικά Δίκτυα (DNN), Συνεργατικά Νευρωνικά Δίκτυα (CNN) και Επαναλαμβανόμενα Νευρωνικά Δίκτυα (RNN). Η εκπαίδευση του Νευρικού Δικτύου είναι διαθέσιμη ως "onsite live training" ή "remote live training". Η επιτόπια κατάρτιση σε πραγματικό χρόνο μπορεί να πραγματοποιηθεί σε τοπικό επίπεδο στις εγκαταστάσεις του πελάτη Ελλάδα ή σε εταιρικά κέντρα κατάρτισης NobleProg στο Ελλάδα . Η απομακρυσμένη ζωντανή προπόνηση πραγματοποιείται μέσω μιας διαδραστικής, απομακρυσμένης επιφάνειας εργασίας. NobleProg - Ο τοπικός παροχέας εκπαίδευσης

Machine Translated

Testimonials

★★★★★
★★★★★

Neural Networks Subcategories

Neural Networks Course Outlines

Course Name
Duration
Overview
Course Name
Duration
Overview
14 hours
Overview
Αυτό το μάθημα καλύπτει το AI (με έμφαση στη Machine Learning και Deep Learning ) στην Automotive . Βοηθά να προσδιοριστεί ποια τεχνολογία μπορεί (ενδεχομένως) να χρησιμοποιηθεί σε πολλαπλές περιπτώσεις ενός αυτοκινήτου: απλή αυτοματοποίηση, αναγνώριση εικόνας σε αυτόνομη λήψη αποφάσεων.
14 hours
Overview
Σε αυτή την καθοδηγούμενη από εκπαιδευτή, ζωντανή εκπαίδευση, οι συμμετέχοντες θα μάθουν πώς να χρησιμοποιούν το Matlab για να σχεδιάσουν, να κατασκευάσουν και να απεικονίσουν ένα συνελικτικό νευρωνικό δίκτυο για αναγνώριση εικόνας.

Μέχρι τη λήξη αυτής της εκπαίδευσης, οι συμμετέχοντες θα μπορούν:

- Δημιουργήστε ένα μοντέλο βαθιάς μάθησης
- Αυτοματοποιήστε την επισήμανση δεδομένων
- Εργασία με μοντέλα από Caffe και TensorFlow - Keras
- Τα δεδομένα τρένων χρησιμοποιούν πολλαπλές GPU , το σύννεφο ή τα clusters

Κοινό

- Προγραμματιστές
- Μηχανικοί
- Εμπειρογνώμονες τομέα

Μορφή του μαθήματος

- Διάλεξη μέρους, μερική συζήτηση, ασκήσεις και βαριά πρακτική άσκηση
7 hours
Overview
The Tensor Processing Unit (TPU) is the architecture which Google has used internally for several years, and is just now becoming available for use by the general public. It includes several optimizations specifically for use in neural networks, including streamlined matrix multiplication, and 8-bit integers instead of 16-bit in order to return appropriate levels of precision。

In this instructor-led, live training, participants will learn how to take advantage of the innovations in TPU processors to maximize the performance of their own AI applications.

By the end of the training, participants will be able to:

- Train various types of neural networks on large amounts of data.
- Use TPUs to speed up the inference process by up to two orders of magnitude.
- Utilize TPUs to process intensive applications such as image search, cloud vision and photos.

Format of the course

- Part lecture, part discussion, exercises and heavy hands-on practice
7 hours
Overview
Snorkel is a system for rapidly creating, modeling, and managing training data. It focuses on accelerating the development of structured or "dark" data extraction applications for domains in which large labeled training sets are not available or easy to obtain.

In this instructor-led, live training, participants will learn techniques for extracting value from unstructured data such as text, tables, figures, and images through modeling of training data with Snorkel.

By the end of this training, participants will be able to:

- Programmatically create training sets to enable the labeling of massive training sets
- Train high-quality end models by first modeling noisy training sets
- Use Snorkel to implement weak supervision techniques and apply data programming to weakly-supervised machine learning systems

Audience

- Developers
- Data scientists

Format of the course

- Part lecture, part discussion, exercises and heavy hands-on practice
14 hours
Overview
Αυτό το μάθημα είναι μια εισαγωγή στην εφαρμογή νευρωνικών δικτύων σε πραγματικά προβλήματα με το λογισμικό R-project.
21 hours
Overview
PaddlePaddle (PArallel Distributed Deep LEarning) is a scalable deep learning platform developed by Baidu.

In this instructor-led, live training, participants will learn how to use PaddlePaddle to enable deep learning in their product and service applications.

By the end of this training, participants will be able to:

- Set up and configure PaddlePaddle
- Set up a Convolutional Neural Network (CNN) for image recognition and object detection
- Set up a Recurrent Neural Network (RNN) for sentiment analysis
- Set up deep learning on recommendation systems to help users find answers
- Predict click-through rates (CTR), classify large-scale image sets, perform optical character recognition(OCR), rank searches, detect computer viruses, and implement a recommendation system.

Audience

- Developers
- Data scientists

Format of the course

- Part lecture, part discussion, exercises and heavy hands-on practice
14 hours
Overview
Το OpenNN είναι μια βιβλιοθήκη κατηγορίας ανοιχτού κώδικα γραμμένη σε C ++ που υλοποιεί νευρωνικά δίκτυα, για χρήση στη μηχανική μάθηση.

Σε αυτό το μάθημα θα ξεπεράσουμε τις αρχές των νευρωνικών δικτύων και θα χρησιμοποιήσουμε το OpenNN για την υλοποίηση μιας δειγματοληπτικής εφαρμογής.

Κοινό
Προγραμματιστές λογισμικού και προγραμματιστές που επιθυμούν να δημιουργήσουν εφαρμογές Deep Learning.

Μορφή του μαθήματος
Διάλεξη και συζήτηση σε συνδυασμό με πρακτικές ασκήσεις.
14 hours
Overview
Αυτή η εκπαιδευτική συνεδρία θα περιλαμβάνει παρουσιάσεις και παραδείγματα υπολογιστών και ασκήσεις μελέτης περιπτώσεων που θα πραγματοποιηθούν με σχετικές νευρικές και βαθιές βιβλιοθήκες δικτύου
28 hours
Overview
Αυτό το μάθημα θα σας δώσει γνώση στα νευρωνικά δίκτυα και γενικά στον αλγόριθμο μηχανικής μάθησης, βαθιά μάθηση (αλγόριθμοι και εφαρμογές).

Η εκπαίδευση αυτή είναι μεγαλύτερη έμφαση στην θεμελιώδη, αλλά θα σας βοηθήσει να επιλέξετε τη σωστή τεχνολογία: TensorFlow , Caffe , Teano, DeepDrive, Keras , κλπ Τα παραδείγματα γίνονται σε TensorFlow .
7 hours
Overview
Η εκπαίδευση απευθύνεται σε άτομα που θέλουν να μάθουν τα βασικά των νευρωνικών δικτύων και τις εφαρμογές τους.
21 hours
Overview
Microsoft Cognitive Toolkit 2.x (previously CNTK) is an open-source, commercial-grade toolkit that trains deep learning algorithms to learn like the human brain. According to Microsoft, CNTK can be 5-10x faster than TensorFlow on recurrent networks, and 2 to 3 times faster than TensorFlow for image-related tasks.

In this instructor-led, live training, participants will learn how to use Microsoft Cognitive Toolkit to create, train and evaluate deep learning algorithms for use in commercial-grade AI applications involving multiple types of data such as data, speech, text, and images.

By the end of this training, participants will be able to:

- Access CNTK as a library from within a Python, C#, or C++ program
- Use CNTK as a standalone machine learning tool through its own model description language (BrainScript)
- Use the CNTK model evaluation functionality from a Java program
- Combine feed-forward DNNs, convolutional nets (CNNs), and recurrent networks (RNNs/LSTMs)
- Scale computation capacity on CPUs, GPUs and multiple machines
- Access massive datasets using existing programming languages and algorithms

Audience

- Developers
- Data scientists

Format of the course

- Part lecture, part discussion, exercises and heavy hands-on practice

Note

- If you wish to customize any part of this training, including the programming language of choice, please contact us to arrange.
21 hours
Overview
Η μηχανική (γνωστή και ως μηχανική μηχανική) είναι ένας συνδυασμός μηχανικής, ηλεκτρονικής και πληροφορικής.

Αυτή η καθοδηγούμενη από εκπαιδευτές, ζωντανή εκπαίδευση (επιτόπια ή απομακρυσμένη) απευθύνεται σε μηχανικούς που επιθυμούν να μάθουν για την εφαρμοσιμότητα της τεχνητής νοημοσύνης στα μηχανικά συστήματα.

Μέχρι τη λήξη αυτής της εκπαίδευσης, οι συμμετέχοντες θα μπορούν:

- Αποκτήστε μια επισκόπηση της τεχνητής νοημοσύνης, της μηχανικής μάθησης και της υπολογιστικής νοημοσύνης.
- Κατανοήστε τις έννοιες των νευρωνικών δικτύων και των διαφορετικών μεθόδων μάθησης.
- Επιλέξτε αποτελεσματικές προσεγγίσεις τεχνητής νοημοσύνης για προβλήματα στην πραγματική ζωή.
- Εφαρμογή εφαρμογών AI στη μηχατρονική μηχανική.

Μορφή του μαθήματος

- Διαδραστική διάλεξη και συζήτηση.
- Πολλές ασκήσεις και πρακτική.
- Χειροκίνητη υλοποίηση σε εργασιακό περιβάλλον.

Επιλογές προσαρμογής μαθημάτων

- Για να ζητήσετε μια προσαρμοσμένη εκπαίδευση για αυτό το μάθημα, επικοινωνήστε μαζί μας για να κανονίσετε.
21 hours
Overview
Τύπος: Θεωρητική κατάρτιση με εφαρμογές που αποφασίστηκαν ανάντη με τους φοιτητές στη Λαζάνια ή Keras σύμφωνα με την παιδαγωγική ομάδα

Μέθοδος διδασκαλίας: παρουσίαση, ανταλλαγές και μελέτες περιπτώσεων

Η τεχνητή νοημοσύνη, αφού διέλυσε πολλά επιστημονικά πεδία, άρχισε να φέρνει επανάσταση σε μεγάλο αριθμό οικονομικών τομέων (βιομηχανία, ιατρική, επικοινωνία κλπ.). Παρ 'όλα αυτά, η παρουσίασή της στα μεγάλα μέσα μαζικής ενημέρωσης είναι συχνά φαντασία, μακριά από ό, τι είναι πραγματικά οι τομείς της Machine Learning ή της Deep Learning . Σκοπός αυτής της κατάρτισης είναι η παροχή στους μηχανικούς, οι οποίοι έχουν ήδη κατορθώσει να κατακτήσουν τα εργαλεία ηλεκτρονικών υπολογιστών (συμπεριλαμβανομένης βάσης προγραμματισμού λογισμικού), μια εισαγωγή στην Deep Learning και τους διάφορους τομείς εξειδίκευσής της και συνεπώς στις βασικές υπάρχουσες αρχιτεκτονικές δικτύων σήμερα. Αν οι μαθηματικές βάσεις ανακληθούν κατά τη διάρκεια του μαθήματος, ένα επίπεδο μαθηματικών τύπου BAC + 2 συνιστάται για περισσότερη άνεση. Είναι απολύτως δυνατό να παραλείψετε τον μαθηματικό άξονα να διατηρήσετε μόνο ένα όραμα "συστήματος", αλλά αυτή η προσέγγιση θα περιορίσει σε μεγάλο βαθμό την κατανόησή σας για το θέμα.
7 hours
Overview
Το μάθημα αυτό έχει δημιουργηθεί για διευθυντές, αρχιτέκτονες λύσεων, αξιωματικούς καινοτομίας, ΚΟΤ, αρχιτέκτονες λογισμικού και όσους ενδιαφέρονται για μια επισκόπηση της εφαρμοσμένης τεχνητής νοημοσύνης και για την πλησιέστερη πρόβλεψη για την ανάπτυξή της.
14 hours
Overview
Encog is an open-source machine learning framework for Java and .Net.

In this instructor-led, live training, participants will learn how to create various neural network components using ENCOG. Real-world case studies will be discussed and machine language based solutions to these problems will be explored.

By the end of this training, participants will be able to:

- Prepare data for neural networks using the normalization process
- Implement feed forward networks and propagation training methodologies
- Implement classification and regression tasks
- Model and train neural networks using Encog's GUI based workbench
- Integrate neural network support into real-world applications

Audience

- Developers
- Analysts
- Data scientists

Format of the course

- Part lecture, part discussion, exercises and heavy hands-on practice
14 hours
Overview
Encog is an open-source machine learning framework for Java and .Net.

In this instructor-led, live training, participants will learn advanced machine learning techniques for building accurate neural network predictive models.

By the end of this training, participants will be able to:

- Implement different neural networks optimization techniques to resolve underfitting and overfitting
- Understand and choose from a number of neural network architectures
- Implement supervised feed forward and feedback networks

Audience

- Developers
- Analysts
- Data scientists

Format of the course

- Part lecture, part discussion, exercises and heavy hands-on practice
21 hours
Overview
Βαθιά Ενίσχυση Η μάθηση αναφέρεται στην ικανότητα ενός «τεχνητού πράκτορα» να μάθει με δοκιμασία και λάθος και ανταμοιβές και τιμωρίες. Ένας τεχνητός παράγοντας στοχεύει να μιμηθεί την ικανότητα του ανθρώπου να αποκτά και να κατασκευάζει τη γνώση από μόνος του, απευθείας από ακατέργαστες εισροές όπως το όραμα. Για να υλοποιηθεί η μάθηση ενίσχυσης, χρησιμοποιείται βαθιά μάθηση και νευρωνικά δίκτυα. Η ενδυνάμωση της μάθησης είναι διαφορετική από τη μηχανική μάθηση και δεν βασίζεται σε εποπτευόμενες και ανεξέλεγκτες προσεγγίσεις μάθησης.

Σε αυτήν την καθοδηγούμενη από εκπαιδευτή, ζωντανή προπόνηση, οι συμμετέχοντες θα μάθουν τα βασικά στοιχεία της Μάθησης βαθιάς ενίσχυσης, καθώς περνούν μέσα από τη δημιουργία ενός Deep Learning Agent.

Μέχρι τη λήξη αυτής της εκπαίδευσης, οι συμμετέχοντες θα μπορούν:

- Κατανοήστε τις βασικές έννοιες πίσω από τη μάθηση βαθιάς ενίσχυσης και μπορείτε να το διακρίνετε από τη Machine Learning
- Εφαρμόστε τους προηγμένους αλγόριθμους ενίσχυσης της ενίσχυσης για την επίλυση προβλημάτων πραγματικού κόσμου
- Δημιουργήστε ένα Deep Learning Agent

Κοινό

- Προγραμματιστές
- Επιστήμονες δεδομένων

Μορφή του μαθήματος

- Διάλεξη μέρους, μερική συζήτηση, ασκήσεις και βαριά πρακτική άσκηση
21 hours
Overview
Αυτή η μάθημα καθοδηγείται από εκπαιδευτές παρέχει μια εισαγωγή στο πεδίο της αναγνώρισης προτύπων και της μηχανικής μάθησης. Ασχολείται με πρακτικές εφαρμογές στις στατιστικές, την επιστήμη των υπολογιστών, την επεξεργασία σήματος, την ηλεκτρονική όραση, την εξόρυξη δεδομένων και τη βιοπληροφορική.

Το μάθημα είναι διαδραστικό και περιλαμβάνει πολλές πρακτικές ασκήσεις, ανατροφοδότηση εκπαιδευτών και δοκιμή γνώσεων και δεξιοτήτων που αποκτήθηκαν.
21 hours
Overview
Το τεχνητό νευρωνικό δίκτυο είναι ένα υπολογιστικό μοντέλο δεδομένων που χρησιμοποιείται στην ανάπτυξη συστημάτων Artificial Intelligence (AI) ικανών να εκτελούν "ευφυή" καθήκοντα. Neural Networks χρησιμοποιούνται συνήθως στις εφαρμογές Machine Learning (ML), οι οποίες είναι οι ίδιες μια υλοποίηση του AI. Deep Learning είναι ένα υποσύνολο του ML.
14 hours
Overview
Αυτό το εκπαιδευτικό μάθημα απευθύνεται σε άτομα που θα ήθελαν να εφαρμόσουν Machine Learning σε πρακτικές εφαρμογές.

Κοινό

Αυτό το μάθημα απευθύνεται σε επιστήμονες και στατιστικολόγους που έχουν κάποια εξοικείωση με στατιστικά στοιχεία και γνωρίζουν πώς να προγραμματίσουν R (ή Python ή άλλη επιλεγμένη γλώσσα). Η έμφαση δίνεται στις πρακτικές πτυχές της προετοιμασίας δεδομένων / μοντέλων, της εκτέλεσης, της μετα-hoc ανάλυσης και της απεικόνισης.

Ο σκοπός είναι να δοθούν πρακτικές εφαρμογές στη Machine Learning σε συμμετέχοντες που ενδιαφέρονται να εφαρμόσουν τις μεθόδους στην εργασία.

Παραδείγματα συγκεκριμένων τομέων χρησιμοποιούνται για να κάνουν την εκπαίδευση σχετική με το κοινό.
28 hours
Overview
Πρόκειται για ένα μάθημα διάρκειας 4 ημερών που εισάγει AI και είναι εφαρμογή που χρησιμοποιεί τη Python προγραμματισμού Python . Υπάρχει μια επιλογή να έχετε μια επιπλέον ημέρα για να πραγματοποιήσετε ένα έργο AI μετά την ολοκλήρωση αυτού του μαθήματος.
28 hours
Overview
This is a 4 day course introducing AI and it's application. There is an option to have an additional day to undertake an AI project on completion of this course.
21 hours
Overview
Το τεχνητό νευρωνικό δίκτυο είναι ένα υπολογιστικό μοντέλο δεδομένων που χρησιμοποιείται στην ανάπτυξη συστημάτων Artificial Intelligence (AI) ικανών να εκτελούν "ευφυή" καθήκοντα. Neural Networks χρησιμοποιούνται συνήθως στις εφαρμογές Machine Learning (ML), οι οποίες είναι οι ίδιες μια υλοποίηση του AI. Deep Learning είναι ένα υποσύνολο του ML.
35 hours
Overview
This course is created for people who have no previous experience in probability and statistics.
35 hours
Overview
Αυτό το μάθημα ξεκινά με την παροχή εννοιολογικής γνώσης στα νευρωνικά δίκτυα και γενικά στον αλγόριθμο μηχανικής μάθησης, τη βαθιά μάθηση (αλγόριθμοι και εφαρμογές).

Μέρος-1 (40%) αυτής της εκπαίδευσης είναι μεγαλύτερη έμφαση στην θεμελιώδη, αλλά θα σας βοηθήσει να επιλέγετε τη σωστή τεχνολογία: TensorFlow , Caffe , Θεανώ, DeepDrive, Keras , κ.λπ.

Μέρος-2 (20%) αυτής της εκπαίδευσης εισάγει Theano - μια βιβλιοθήκη python που καθιστά εύκολη τη σύνταξη εγγράφων βαθιάς μάθησης.

Το τμήμα 3 (40%) της κατάρτισης θα βασίζεται σε μεγάλο βαθμό στο Tensorflow - API δεύτερης γενιάς της βιβλιοθήκης λογισμικού ανοιχτού κώδικα της Go ogle για την Deep Learning . Τα παραδείγματα και το handson θα γίνουν όλα στο TensorFlow .

Κοινό

Αυτό το μάθημα προορίζεται για μηχανικούς που επιδιώκουν να χρησιμοποιήσουν το TensorFlow για τα έργα Deep Learning

Μετά την ολοκλήρωση αυτού του μαθήματος, οι εκπρόσωποι θα:

-

έχουν μια καλή κατανόηση για τα βαθιά νευρωνικά δίκτυα (DNN), το CNN και το RNN

-

κατανοήσουν τη δομή και τους μηχανισμούς ανάπτυξης του TensorFlow

-

να είναι σε θέση να εκτελέσει εργασίες εγκατάστασης / περιβάλλοντος παραγωγής / αρχιτεκτονικής και διαμόρφωση

-

να είναι σε θέση να αξιολογήσει την ποιότητα του κώδικα, να εκτελέσει εντοπισμό σφαλμάτων, παρακολούθηση

-

να είναι σε θέση να εφαρμόσει προηγμένη παραγωγή, όπως μοντέλα κατάρτισης, δημιουργία γραφημάτων και καταγραφή
Weekend Neural Networks courses, Evening Neural Networks training, Neural Networks boot camp, Neural Networks instructor-led, Weekend Neural Networks training, Evening Neural Networks courses, Neural Networks coaching, Neural Networks instructor, Neural Networks trainer, Neural Networks training courses, Neural Networks classes, Neural Networks on-site, Neural Networks private courses, Neural Networks one on one training

Course Discounts

Course Discounts Newsletter

We respect the privacy of your email address. We will not pass on or sell your address to others.
You can always change your preferences or unsubscribe completely.

Some of our clients

is growing fast!

We are looking to expand our presence in Greece!

As a Business Development Manager you will:

  • expand business in Greece
  • recruit local talent (sales, agents, trainers, consultants)
  • recruit local trainers and consultants

We offer:

  • Artificial Intelligence and Big Data systems to support your local operation
  • high-tech automation
  • continuously upgraded course catalogue and content
  • good fun in international team

If you are interested in running a high-tech, high-quality training and consulting business.

Apply now!