Course Outline

Εισαγωγή

Επισκόπηση του Azure Machine Learning (AML) Χαρακτηριστικά και Αρχιτεκτονική

Επισκόπηση μιας ροής εργασίας από άκρο σε άκρο σε AML (Azure Machine Learning Pipelines)

Παροχή εικονικών μηχανών στο Cloud

Θέματα κλιμάκωσης (CPU, GPUs και FPGA)

Πλοήγηση Azure Machine Learning Studio

Προετοιμασία Δεδομένων

Κατασκευή μοντέλου

Εκπαίδευση και δοκιμή ενός μοντέλου

Εγγραφή εκπαιδευμένου μοντέλου

Δημιουργία εικόνας μοντέλου

Ανάπτυξη μοντέλου

Παρακολούθηση Μοντέλου στην Παραγωγή

Αντιμετώπιση προβλημάτων

Περίληψη και Συμπέρασμα

Requirements

  • Κατανόηση των εννοιών της μηχανικής μάθησης.
  • Γνώση των εννοιών του cloud computing.
  • Μια γενική κατανόηση των κοντέινερ (Docker) και της ενορχήστρωσης (Kubernetes).
  • Η εμπειρία προγραμματισμού Python ή R είναι χρήσιμη.
  • Εμπειρία εργασίας με γραμμή εντολών.

Ακροατήριο

  • Μηχανικοί επιστήμης δεδομένων
  • DevOps μηχανικοί που ενδιαφέρονται για την ανάπτυξη μοντέλων μηχανικής μάθησης
  • Οι μηχανικοί υποδομής ενδιαφέρονται για την ανάπτυξη μοντέλων μηχανικής μάθησης
  • Μηχανικοί λογισμικού που επιθυμούν να αυτοματοποιήσουν την ενσωμάτωση και την ανάπτυξη λειτουργιών μηχανικής εκμάθησης με την εφαρμογή τους
 21 Hours

Number of participants


Price per participant

Testimonials (2)

Upcoming Courses

Related Categories