Πορεία Εξασκητικής Για την Ομαλοποίηση συστημάτων γενέσεως που ενισχύονται με ανάκτηση (RAG) Κομμάτι εκπαίδευσης
Η προσαρμογή για συστήματα Αύξησης Πληροφόρησης με Επανάληψη (RAG) είναι το διαδικαστικό προσαρμογής για τον τρόπο με τον οποίο τα μεγάλα μοντέλα φυσικής γλώσσας ανακτούν και παράγουν σχετική πληροφόρηση από εξωτερικές πηγές για επιχειρηματικές εφαρμογές.
Αυτή η εκπαίδευση με εξηγητή (online ή on-site) απευθύνεται σε ντεβελόπερ NLP και ομάδες διαχείρισης γνώσης με επίπεδο μεσαίου, που θέλουν να προσαρμόσουν συμβατικά πρωτότυπα RAG για τη βελτίωση των εφαρμογών απάντησης σε ερωτήσεις, επιχειρηματική αναζήτηση και περίληψη.
Επί τέλους αυτής της εκπαίδευσης, οι συμμετέχοντες θα μπορούν να:
- Κατανοήσουν την αρχιτεκτονική και διαδικασία λειτουργίας των συστημάτων RAG.
- Να προσαρμόσουν συνιστώντες και γεννήτριες συσκευές για τα δεδομένα ανάλογων εξειδίκευσης.
- Να επιδοκιμάσουν την απόδοση RAG και να εφαρμόσουν βελτιώσεις μέσω τεχνικών PEFT.
- Να εγκαταστήσουν προσαρμοσμένα συστήματα RAG για εσωτερική ή παραγωγική χρήση.
Μορφή του Κούρσου
- Αλληλεπίδραση και συζήτηση με διάλεξη.
- Πολλά ασκήματα και πράξη.
- Εφαρμογή χειροντίκως σε ένβιρονμεντ με δυναμικό laboratorium (live-lab).
Επιλογές Προσαρμογής Κούρσου
- Για να αιτηθείτε μια προσαρμοσμένη εκπαίδευση γι' αυτό το κούρσο, παρακαλώ επικοινωνήστε μαζί μας για να διοργανώσουμε.
Εξέλιξη Κομματιού
Εισαγωγή στην Retrieval-Augmented Generation (RAG)
- Τι είναι η RAG και γιατί είναι σημαντική για την πολυεπιχειρηματική ΤΕ
- Συστατικά μιας συστήματος RAG: retriever, generator, document store
- Σύγκριση με ανεξάρτητα LLMs και vector search
Ρύθμιση ενός Pipeline RAG
- Εγκατάσταση και ρύθμιση Haystack ή παρόμοιων πλαισίων
- Συμπεριφορά δοκιμένων κειμένων και προεπεξεργασία
- Σύνδεση retrievers με vector databases (π.χ., FAISS, Pinecone)
Προσαρμογή του Retriever
- Εκπαίδευση πυκνών retrievers χρησιμοποιώντας δεδomena συγκεκριμένων τομέων
- Χρήση sentence transformers και contrastive learning
- Αξιολόγηση ποιότητας retriever με top-k accuracy
Προσαρμογή του Generator
- Επιλογή βασικών μοντέλων (π.χ., BART, T5, FLAN-T5)
- Instruction tuning vs. supervised fine-tuning
- Μεθόδους LoRA και PEFT για αποδοτική ενημέρωση
Αξιολόγηση και Βελτίωση
- Μέτρα για την αξιολόγηση της απόδοσης RAG (π.χ., BLEU, EM, F1)
- Χρόνο υλοποίησης, ποιότητα retrieval και μείωση hallucination
- Παρακολούθηση εκπειριμάτων και συνεχής βελτίωση
Εφαρμογή και ολοκληρωμένη ολοκλήρωση
- Εφαρμογή RAG σε εσωτερικά μηχανήματα αναζήτησης και chatbots
- Σύνθετα ζητήματα ασφάλειας, πρόσβασης δεδομένων και επικοινωνίας
- Ενσωμάτωση με APIs, πίνακες και γνώσεις πύλες
Κρίσιμα Συμπεράσματα και Καλές Πρακτικές
- Επιχειρηματικές εφαρμογές στην χρηματοπιστωτική, υγεία και νομική
- Διαχείριση του διαδρομικού πλάνου τομέα και ενημέρωση γνώσεων βάσεων
- Μέλλοντικές κατευθύνσεις σε retrieval-augmented LLM systems
Σύνοψη και Επόμενα Βήματα
Απαιτήσεις
- Κατανόηση των επιστημονικών αρχών της Εξεργασίας Φυσικής Γλώσσας (NLP)
- Εμπειρία με γλωσσικά μοντέλα βασισμένα σε τροποποιητές
- Γνώση του Python και των βασικών ροών επεξεργασίας μηχανής μάθησης
Αποδέκτες Εκπαίδευσης
- Μηχανικοί NLP
- Ομάδες διαχείρισης γνώσης
Κομμάτια Εκπαίδευσης χρειάζονται 5+ συμμετέχοντες.
Πορεία Εξασκητικής Για την Ομαλοποίηση συστημάτων γενέσεως που ενισχύονται με ανάκτηση (RAG) Κομμάτι εκπαίδευσης - Κράτηση
Πορεία Εξασκητικής Για την Ομαλοποίηση συστημάτων γενέσεως που ενισχύονται με ανάκτηση (RAG) Κομμάτι εκπαίδευσης - Ζήτημα Συμβουλευτικής
Πορεία Εξασκητικής Για την Ομαλοποίηση συστημάτων γενέσεως που ενισχύονται με ανάκτηση (RAG) - Συμβουλευτική Αίτημα
Συμβουλευτική Αίτημα
Εφεξής Μαθήματα
Σχετικά Μαθήματα
Advanced Techniques in Transfer Learning
14 ΏρεςΑυτή η ζωντανή εκπαίδευση υπό την καθοδήγηση εκπαιδευτών στο Ελλάδα (διαδικτυακό ή επιτόπου) απευθύνεται σε επαγγελματίες μηχανικής εκμάθησης προηγμένου επιπέδου που επιθυμούν να κατακτήσουν τις σύγχρονες τεχνικές μεταφοράς εκμάθησης και να τις εφαρμόσουν σε πολύπλοκα προβλήματα του πραγματικού κόσμου.
Με το τέλος αυτής της εκπαίδευσης, οι συμμετέχοντες θα είναι σε θέση:
- Κατανοήστε προηγμένες έννοιες και μεθοδολογίες στη μεταφορά μάθησης.
- Εφαρμογή τεχνικών προσαρμογής σε συγκεκριμένο τομέα για προεκπαιδευμένα μοντέλα.
- Εφαρμόστε συνεχή μάθηση για τη διαχείριση εξελισσόμενων εργασιών και συνόλων δεδομένων.
- Κατακτήστε τη λεπτομέρεια πολλαπλών εργασιών για να βελτιώσετε την απόδοση του μοντέλου σε όλες τις εργασίες.
Ανάπτυξη Συμβατοποιημένων Μοντέλων σε Πραγματικό Περιβάλλον
21 ΏρεςΑυτή η ζωντανή εκπαίδευση υπό την καθοδήγηση εκπαιδευτών στο Ελλάδα (διαδικτυακό ή επιτόπου) απευθύνεται σε επαγγελματίες προηγμένου επιπέδου που επιθυμούν να αναπτύξουν βελτιωμένα μοντέλα αξιόπιστα και αποτελεσματικά.
Με το τέλος αυτής της εκπαίδευσης, οι συμμετέχοντες θα είναι σε θέση:
- Κατανοήστε τις προκλήσεις της ανάπτυξης βελτιωμένων μοντέλων στην παραγωγή.
- Δημιουργήστε κοντέινερ και αναπτύξτε μοντέλα χρησιμοποιώντας εργαλεία όπως Docker και Kubernetes.
- Εφαρμογή παρακολούθησης και καταγραφής για αναπτυγμένα μοντέλα.
- Βελτιστοποιήστε μοντέλα για καθυστέρηση και επεκτασιμότητα σε σενάρια πραγματικού κόσμου.
Domain-Specific Fine-Tuning για τη Φινάνσες
21 ΏρεςΑυτή η ζωντανή εκπαίδευση υπό την καθοδήγηση εκπαιδευτών στο Ελλάδα (διαδικτυακό ή επιτόπου) απευθύνεται σε επαγγελματίες μεσαίου επιπέδου που επιθυμούν να αποκτήσουν πρακτικές δεξιότητες στην προσαρμογή μοντέλων AI για κρίσιμες οικονομικές εργασίες.
Με το τέλος αυτής της εκπαίδευσης, οι συμμετέχοντες θα είναι σε θέση:
- Κατανόηση των θεμελιωδών αρχών της μικρορύθμισης για χρηματοοικονομικές εφαρμογές.
- Αξιοποιήστε προεκπαιδευμένα μοντέλα για εργασίες σε συγκεκριμένους τομείς στα χρηματοοικονομικά.
- Εφαρμόστε τεχνικές για τον εντοπισμό απάτης, την αξιολόγηση κινδύνου και τη δημιουργία οικονομικών συμβουλών.
- Διασφαλίστε τη συμμόρφωση με τους οικονομικούς κανονισμούς όπως το GDPR και το SOX.
- Εφαρμογή ασφάλειας δεδομένων και ηθικών πρακτικών τεχνητής νοημοσύνης σε χρηματοοικονομικές εφαρμογές.
Επιβεβαίωση Μοντέλων και Μεγάλων Λεξικομηχανικών Μοντέλων (LLMs)
14 ΏρεςΑυτή η ζωντανή εκπαίδευση στο Ελλάδα από εκπαιδευτές (διαδικτυακή ή επιτόπου) απευθύνεται σε επαγγελματίες μεσαίου έως προχωρημένου επιπέδου που επιθυμούν να προσαρμόσουν προεκπαιδευμένα μοντέλα για συγκεκριμένες εργασίες και σύνολα δεδομένων.
Με το τέλος αυτής της εκπαίδευσης, οι συμμετέχοντες θα είναι σε θέση:
- Κατανόηση των αρχών της μικρορύθμισης και των εφαρμογών της.
- Προετοιμάστε σύνολα δεδομένων για βελτιστοποίηση προεκπαιδευμένων μοντέλων.
- Βελτιώστε τα μοντέλα μεγάλων γλωσσών (LLM) για εργασίες NLP.
- Βελτιστοποιήστε την απόδοση του μοντέλου και αντιμετωπίστε κοινές προκλήσεις.
Efharistiki Katakratisi me Diplotitou Rouri Adapthsh (LoRA)
14 ΏρεςΑυτή η ζωντανή εκπαίδευση υπό την καθοδήγηση εκπαιδευτών στο Ελλάδα (διαδικτυακό ή επιτόπου) απευθύνεται σε προγραμματιστές μεσαίου επιπέδου και επαγγελματίες τεχνητής νοημοσύνης που επιθυμούν να εφαρμόσουν στρατηγικές λεπτομέρειας για μεγάλα μοντέλα χωρίς την ανάγκη εκτεταμένων υπολογιστικών πόρων.
Με το τέλος αυτής της εκπαίδευσης, οι συμμετέχοντες θα είναι σε θέση:
- Κατανοήστε τις αρχές της Προσαρμογής Χαμηλής Κατάταξης (LoRA).
- Εφαρμόστε το LoRA για αποτελεσματική μικρορύθμιση μεγάλων μοντέλων.
- Βελτιστοποιήστε τη λεπτομέρεια για περιβάλλοντα με περιορισμένους πόρους.
- Αξιολογήστε και αναπτύξτε μοντέλα συντονισμένα με LoRA για πρακτικές εφαρμογές.
Επιτοimenikopoίηση Πολυμεταβλητών Μοντέλων
28 ΏρεςΑυτή η ζωντανή εκπαίδευση υπό την καθοδήγηση εκπαιδευτών στο Ελλάδα (διαδικτυακά ή επιτόπου) απευθύνεται σε επαγγελματίες προηγμένου επιπέδου που επιθυμούν να κατακτήσουν τη λεπτομέρεια πολυτροπικών μοντέλων για καινοτόμες λύσεις τεχνητής νοημοσύνης.
Με το τέλος αυτής της εκπαίδευσης, οι συμμετέχοντες θα είναι σε θέση:
- Κατανοήστε την αρχιτεκτονική πολυτροπικών μοντέλων όπως το CLIP και το Flamingo.
- Προετοιμάστε και προεπεξεργαστείτε αποτελεσματικά πολυτροπικά σύνολα δεδομένων.
- Βελτιώστε τα πολυτροπικά μοντέλα για συγκεκριμένες εργασίες.
- Βελτιστοποιήστε μοντέλα για εφαρμογές και επιδόσεις πραγματικού κόσμου.
Επιβεβαίωση για Φυσική Προσέγγιση Γλώσσας (NLP)
21 ΏρεςΑυτή η ζωντανή εκπαίδευση υπό την καθοδήγηση εκπαιδευτών στο Ελλάδα (διαδικτυακό ή επιτόπου) απευθύνεται σε επαγγελματίες μεσαίου επιπέδου που επιθυμούν να βελτιώσουν τα έργα τους NLP μέσω της αποτελεσματικής προσαρμογής προεκπαιδευμένων μοντέλων γλώσσας.
Με το τέλος αυτής της εκπαίδευσης, οι συμμετέχοντες θα είναι σε θέση:
- Κατανοήστε τις βασικές αρχές της μικρορύθμισης για εργασίες NLP.
- Βελτιστοποιήστε τα προεκπαιδευμένα μοντέλα όπως τα GPT, BERT και T5 για συγκεκριμένες εφαρμογές NLP.
- Βελτιστοποιήστε τις υπερπαραμέτρους για βελτιωμένη απόδοση μοντέλου.
- Αξιολογήστε και αναπτύξτε τα τελειοποιημένα μοντέλα σε πραγματικά σενάρια.
Τετριγύρωση των DeepSeek LLM για Προσανατολισμένα Μοντέλα AI
21 ΏρεςΑυτή η εκπαιδευτική, ζωντανή εκπαιδευτική μάθηση σε Ελλάδα (μέσω διαδίκτου ή σε χώρο προσωπικής παρουσίας) είναι προσανατολισμένη σε επαγγελματίες αυξημένου επιπέδου ιατρικής και μηχανικών μάθησης, καθώς και σε προγραμματιστές που θέλουν να αποδοτικά προσαρμόσουν τα μοντέλα DeepSeek LLM για να δημιουργήσουν ειδικοποιημένες ικανότητες AI που συμβάλλουν σε κάθε γνωστική, τομέα ή ανάγκες επιχείρησης.
Στο τέλος αυτής της εκπαίδευσης, οι συμμετέχοντες θα μπορούν να:
- Ποντάρουν τη δομή και τις δυνατότητες των μοντέλων DeepSeek, συμπεριλαμβανομένων των DeepSeek-R1 και DeepSeek-V3.
- Παρασκευάζουν δεδομένα και προεπεξεργάζονται τα δεδομένα για την προσαρμόσεις.
- Προσαρμόσουν τα μοντέλα DeepSeek LLM για εφαρμογές αποδοτικής προσαρμόσεως.
- Ορθοποιήσουν και εγκαταστήσουν αποδοτικά τα μοντέλα προσαρμόσεως.
Fine-Tuning Μεγάλα Λογισμικό Προτύπων Χρησιμοποιώντας QLoRA
14 ΏρεςΑυτή η εκπαίδευση με οδηγό σε ύψιστη ζώνη (online ή αποδοχάριθμη) προσβλέπει σε μηχανικούς εξειδίκευσης μάशιν-λέρνινγκ, αναπτυκτές AI και επιστήμονες δεδομένων που θέλουν να μάθουν πώς να χρησιμοποιήσουν το QLoRA για αποτελεσματική εφαρμογή μεγάλων μο델 συγκεκριμένων υποθέσεων και προσαρμογών.
Στο τέλος αυτής της εκπαίδευσης, οι συμμετέχοντες θα μπορέσουν να:
- Καταλάβουν τη θεωρία πίσω από το QLoRA και τις τεχνικές εκτιμήσεων για LLMs.
- Εφαρμόσουν το QLoRA στην εφαρμογή μεγάλων λεξικολογικών μοδέλων για προσβλέπουσες εφαρμογές.
- Οικονομοποιήσουν την απόδοση εφαρμογής σε περιορισμένα υπολογιστικά πόρα με τη χρήση των τεχνικών εκτιμήσεων.
- Ανάπτυξαν και αξιολογήσαν οικοδομημένα μοντέλα σε πραγματικό περιβάλλον εφαρμογών αποτελεσματικά.
Fine-Tuning with Reinforcement Learning from Human Feedback (RLHF)
14 ΏρεςΑυτή η κατεύθυνση που διδάσκεται από εκπαιδευτικό σε Ελλάδα (online ή on-site) απευθύνεται σε μηχανικούς τηλεματικής υψηλής εξέλιξης και έρευνα AI που θέλουν να εφαρμόσουν την RLHF για να αποτελέσουν τη λεπτή ρύθμιση μεγάλων μοντέλων AI για καλύτερη απόδοση, ασφάλεια και συμβατότητα.
Στο τέλος αυτής της εκπαίδευσης, οι συμμετέχοντες θα μπορούν να:
- Κατανοήσουν τα θεωρητικά βάση της RLHF και γιατί είναι απολυτά απαραίτητη στη σύγχρονη ανάπτυξη AI.
- Εφαρμόσουν μοντέλα αμειβών βασισμένα στην ανθρωπίνη αντίδραση για να καθοδηγήσουν τις διαδικασίες εξυφάνισης.
- Προχωρούν στη λεπτή ρύθμιση μεγάλων γλωσσικών μοντέλων χρησιμοποιώντας τεχνικές RLHF για να συμφωνήσουν οι αποτελέσματα με τις ανθρωπινές προτιμήσεις.
- Εφαρμόσουν καλύτερες πρακτικές για την κλίμακα ρυθμιστικών διαδικασιών RLHF για συστήματα AI επαγγελματικής έβδομης.
Optimization of Large Models for Cost-Effective Fine-Tuning
21 ΏρεςΑυτή η ζωντανή εκπαίδευση υπό την καθοδήγηση εκπαιδευτών στο Ελλάδα (διαδικτυακά ή επιτόπου) απευθύνεται σε επαγγελματίες προχωρημένου επιπέδου που επιθυμούν να κατακτήσουν τεχνικές για τη βελτιστοποίηση μεγάλων μοντέλων για οικονομικά αποδοτική λεπτομέρεια σε σενάρια πραγματικού κόσμου.
Με το τέλος αυτής της εκπαίδευσης, οι συμμετέχοντες θα είναι σε θέση:
- Κατανοήστε τις προκλήσεις της τελειοποίησης των μεγάλων μοντέλων.
- Εφαρμόστε κατανεμημένες τεχνικές εκπαίδευσης σε μεγάλα μοντέλα.
- Αξιοποιήστε την κβαντοποίηση και το κλάδεμα του μοντέλου για αποτελεσματικότητα.
- Βελτιστοποιήστε τη χρήση του υλικού για εργασίες τελειοποίησης.
- Αναπτύξτε αποτελεσματικά βελτιωμένα μοντέλα σε περιβάλλοντα παραγωγής.
Σχεδιασμός Προτύπων και Εγκαρτέρωση με Ελάχιστους Δείγματα
14 ΏρεςΑυτή η ζωντανή εκπαίδευση υπό την καθοδήγηση εκπαιδευτών στο Ελλάδα (διαδικτυακή ή επιτόπου) απευθύνεται σε επαγγελματίες μεσαίου επιπέδου που επιθυμούν να αξιοποιήσουν τη δύναμη της άμεσης μηχανικής και της μάθησης με λίγες λήψεις για τη βελτιστοποίηση της απόδοσης LLM για εφαρμογές πραγματικού κόσμου.
Με το τέλος αυτής της εκπαίδευσης, οι συμμετέχοντες θα είναι σε θέση:
- Κατανοήστε τις αρχές της άμεσης μηχανικής και της μάθησης με λίγα βήματα.
- Σχεδιάστε αποτελεσματικές προτροπές για διάφορες εργασίες NLP.
- Αξιοποιήστε τεχνικές λίγες λήψεις για να προσαρμόσετε τα LLM με ελάχιστα δεδομένα.
- Βελτιστοποιήστε την απόδοση LLM για πρακτικές εφαρμογές.
Τεχνικές Οικονομίας Παραμέτρων (PEFT) για Μεγάλους Επηρεασμού Μοντέλα (LLMs)
14 ΏρεςΑυτή η εκπαιδευτική διαμορφωτική εκπαιδευτική σύνθεση σε Ελλάδα (διαδικτύου ή εγκατεστημένη) προσβάλλει μεσαίου επιπέδου δεδομένων επιστήμονες και μηχανικού AI που θέλουν να αναδιατυπώσουν μεγάλα λεξικά μοντέλα με λιγότερο κόστος και πιο αποτελεσματικά χρησιμοποιώντας μέθοδους όπως LoRA, Adapter Tuning, και Prefix Tuning.
Στο τέλος αυτής της εκπαίδευσης, οι συμμετέχοντες θα μπορούν να:
- Καταλάβουν τη θεωρία πίσω από τις προσεγγίσεις αποτελεσματικής αναδιατύπωσης παραμέτρων.
- Εφαρμόσουν LoRA, Adapter Tuning, και Prefix Tuning χρησιμοποιώντας Hugging Face PEFT.
- Συγκρίνουν τις επιδόσεις και τους αλλάγματα κόστους των μεθόδων PEFT προς την ολική αναδιατύπωση.
- Εφαρμόζουν και διευρύνουν τα αναδιατυπωμένα LLMs με μειωμένα υπολογιστικά και αποθήκευσης απαιτήματα.
Εισαγωγή στην Μετάδοση Μάθησης
14 ΏρεςΑυτή η ζωντανή εκπαίδευση στο Ελλάδα (διαδικτυακό ή επιτόπου) από εκπαιδευτές απευθύνεται σε επαγγελματίες μηχανικής εκμάθησης αρχαρίου έως μεσαίου επιπέδου που επιθυμούν να κατανοήσουν και να εφαρμόσουν τεχνικές μεταφοράς εκμάθησης για τη βελτίωση της αποτελεσματικότητας και της απόδοσης σε έργα τεχνητής νοημοσύνης.
Με το τέλος αυτής της εκπαίδευσης, οι συμμετέχοντες θα είναι σε θέση:
- Κατανοήστε τις βασικές έννοιες και τα οφέλη της μάθησης μεταφοράς.
- Εξερευνήστε δημοφιλή προεκπαιδευμένα μοντέλα και τις εφαρμογές τους.
- Εκτελέστε μικρορύθμιση προεκπαιδευμένων μοντέλων για προσαρμοσμένες εργασίες.
- Εφαρμόστε την εκμάθηση μεταφοράς για την επίλυση προβλημάτων πραγματικού κόσμου στο NLP και την όραση υπολογιστή.
Συμβουνευτές Καθολικότητας Προσαρμογών
14 ΏρεςΑυτή η ζωντανή εκπαίδευση υπό την καθοδήγηση εκπαιδευτών στο Ελλάδα (διαδικτυακό ή επιτόπου) απευθύνεται σε επαγγελματίες προχωρημένου επιπέδου που επιθυμούν να βελτιώσουν τις δεξιότητές τους στη διάγνωση και την επίλυση προκλήσεων λεπτομέρειας για μοντέλα μηχανικής μάθησης.
Με το τέλος αυτής της εκπαίδευσης, οι συμμετέχοντες θα είναι σε θέση:
- Διαγνώστε ζητήματα όπως η υπερπροσαρμογή, η υποσυναρμολόγηση και η ανισορροπία δεδομένων.
- Εφαρμογή στρατηγικών για τη βελτίωση της σύγκλισης των μοντέλων.
- Βελτιστοποιήστε τους αγωγούς μικρορύθμισης για καλύτερη απόδοση.
- Αποσφαλμάτωση διεργασιών εκπαίδευσης χρησιμοποιώντας πρακτικά εργαλεία και τεχνικές.