OpenFace: Creating Facial Recognition Systems Training Course
Το OpenFace είναι Python και Torch λογισμικό αναγνώρισης προσώπου ανοιχτού κώδικα σε πραγματικό χρόνο που βασίζεται στην έρευνα FaceNet της Google.
Σε αυτή τη ζωντανή εκπαίδευση υπό την καθοδήγηση εκπαιδευτών, οι συμμετέχοντες θα μάθουν πώς να χρησιμοποιούν τα στοιχεία του OpenFace για να δημιουργήσουν και να αναπτύξουν ένα δείγμα εφαρμογής αναγνώρισης προσώπου.
Με το τέλος αυτής της εκπαίδευσης, οι συμμετέχοντες θα είναι σε θέση:
- Εργαστείτε με τα στοιχεία του OpenFace, συμπεριλαμβανομένων των dlib, OpenVC, Torch και nn4 για την εφαρμογή ανίχνευσης προσώπου, ευθυγράμμισης και μετασχηματισμού
- Εφαρμόστε το OpenFace σε εφαρμογές πραγματικού κόσμου, όπως παρακολούθηση, επαλήθευση ταυτότητας, εικονική πραγματικότητα, παιχνίδια και αναγνώριση επαναλαμβανόμενων πελατών κ.λπ.
Ακροατήριο
- προγραμματιστές
- Επιστήμονες δεδομένων
Μορφή του μαθήματος
- Μέρος διάλεξη, μέρος συζήτηση, ασκήσεις και βαριά πρακτική εξάσκηση
Course Outline
Για να ζητήσετε ένα προσαρμοσμένο περίγραμμα μαθημάτων για αυτήν την εκπαίδευση, επικοινωνήστε μαζί μας για να κανονίσουμε.
Requirements
- Κατανόηση του Deep Learning και των νευρωνικών δικτύων
- Εμπειρία με Python
- Εμπειρία με Torch
Open Training Courses require 5+ participants.
OpenFace: Creating Facial Recognition Systems Training Course - Booking
OpenFace: Creating Facial Recognition Systems Training Course - Enquiry
OpenFace: Creating Facial Recognition Systems - Consultancy Enquiry
Consultancy Enquiry
Testimonials (2)
Οργάνωση, με τήρηση του προτεινόμενου ημερήσιου διαλόγου, η ευρεία γνώση του εκπαιδευτή σ' αυτό το θέμα
Ali Kattan - TWPI
Course - Natural Language Processing with TensorFlow
Machine Translated
Very updated approach or CPI (tensor flow, era, learn) to do machine learning.
Paul Lee
Course - TensorFlow for Image Recognition
Machine Translated
Upcoming Courses
Related Courses
Advanced Stable Diffusion: Deep Learning for Text-to-Image Generation
21 HoursΑυτή η ζωντανή εκπαίδευση υπό την καθοδήγηση εκπαιδευτών στο Ελλάδα (διαδικτυακό ή επιτόπου) απευθύνεται σε επιστήμονες δεδομένων μεσαίου έως προχωρημένου επιπέδου, μηχανικούς μηχανικής μάθησης, ερευνητές βαθιάς μάθησης και ειδικούς στην όραση υπολογιστών που επιθυμούν να επεκτείνουν τις γνώσεις και τις δεξιότητές τους στη βαθιά μάθηση για δημιουργία κειμένου σε εικόνα.
Με το τέλος αυτής της εκπαίδευσης, οι συμμετέχοντες θα είναι σε θέση:
- Κατανοήστε προηγμένες αρχιτεκτονικές βαθιάς εκμάθησης και τεχνικές για τη δημιουργία κειμένου σε εικόνα.
- Εφαρμόστε πολύπλοκα μοντέλα και βελτιστοποιήσεις για σύνθεση εικόνας υψηλής ποιότητας.
- Βελτιστοποιήστε την απόδοση και την επεκτασιμότητα για μεγάλα σύνολα δεδομένων και πολύπλοκα μοντέλα.
- Συντονίστε τις υπερπαραμέτρους για καλύτερη απόδοση και γενίκευση του μοντέλου.
- Ενσωματώστε το Stable Diffusion με άλλα πλαίσια και εργαλεία βαθιάς μάθησης
AlphaFold
7 HoursΑυτή η ζωντανή εκπαίδευση υπό την καθοδήγηση εκπαιδευτών στο Ελλάδα (διαδικτυακό ή επιτόπου) απευθύνεται σε βιολόγους που επιθυμούν να κατανοήσουν πώς λειτουργεί το AlphaFold και να χρησιμοποιούν μοντέλα AlphaFold ως οδηγούς στις πειραματικές τους μελέτες.
Με το τέλος αυτής της εκπαίδευσης, οι συμμετέχοντες θα είναι σε θέση:
- Κατανοήστε τις βασικές αρχές του AlphaFold.
- Μάθετε πώς λειτουργεί το AlphaFold.
- Μάθετε πώς να ερμηνεύετε AlphaFold προβλέψεις και αποτελέσματα.
Deep Learning for Vision with Caffe
21 HoursCaffe είναι ένα βαθύ πλαίσιο μάθησης που γίνεται με γνώμονα την έκφραση, την ταχύτητα και τη διαμόρφωση.
Αυτό το μάθημα διερευνά την εφαρμογή του Caffe ως πλαισίου βαθιάς μάθησης για την αναγνώριση εικόνων χρησιμοποιώντας το MNIST ως παράδειγμα
Κοινό
Αυτό το μάθημα είναι κατάλληλο για τους ερευνητές και τους μηχανικούς της Deep Learning ενδιαφέρονται να χρησιμοποιήσουν το Caffe ως πλαίσιο.
Μετά την ολοκλήρωση αυτού του μαθήματος, οι εκπρόσωποι θα μπορούν:
- κατανοήσουν τη δομή και τους μηχανισμούς ανάπτυξης του Caffe
- εκτελέστε εργασίες εγκατάστασης / περιβάλλοντος παραγωγής / αρχιτεκτονικής και διαμόρφωση
- να αξιολογήσει την ποιότητα του κώδικα, να εκτελέσει εντοπισμό σφαλμάτων, παρακολούθηση
- να εφαρμόσουν προηγμένη παραγωγή όπως μοντέλα εκπαίδευσης, υλοποίηση στρώσεων και καταγραφή
Deep Learning Neural Networks with Chainer
14 HoursΑυτή η ζωντανή εκπαίδευση υπό την καθοδήγηση εκπαιδευτών στο Ελλάδα (διαδικτυακό ή επιτόπου) απευθύνεται σε ερευνητές και προγραμματιστές που επιθυμούν να χρησιμοποιήσουν το Chainer για να δημιουργήσουν και να εκπαιδεύσουν νευρωνικά δίκτυα στο Python, ενώ παράλληλα κάνουν τον κώδικα εύκολο στον εντοπισμό σφαλμάτων.
Με το τέλος αυτής της εκπαίδευσης, οι συμμετέχοντες θα είναι σε θέση:
- Ρυθμίστε το απαραίτητο περιβάλλον ανάπτυξης για να ξεκινήσετε την ανάπτυξη μοντέλων νευρωνικών δικτύων.
- Ορίστε και εφαρμόστε μοντέλα νευρωνικών δικτύων χρησιμοποιώντας έναν κατανοητό πηγαίο κώδικα.
- Εκτελέστε παραδείγματα και τροποποιήστε υπάρχοντες αλγόριθμους για να βελτιστοποιήσετε τα μοντέλα εκπαίδευσης βαθιάς μάθησης, αξιοποιώντας παράλληλα GPU για υψηλή απόδοση.
Using Computer Network ToolKit (CNTK)
28 HoursΤο Computer Network ToolKit (CNTK) είναι το Open Source, Multi-machine, Multi-GPU, εξαιρετικά αποτελεσματικό πλαίσιο μηχανικής εκμάθησης RNN της Microsoft για ομιλία, κείμενο και εικόνες.
Ακροατήριο
Αυτό το μάθημα απευθύνεται σε μηχανικούς και αρχιτέκτονες που στοχεύουν να χρησιμοποιήσουν το CNTK στα έργα τους.
Deep Learning for Vision
21 HoursΚοινό
Αυτό το μάθημα είναι κατάλληλο για τους ερευνητές και τους μηχανικούς της Deep Learning ενδιαφέρονται να χρησιμοποιήσουν διαθέσιμα εργαλεία (κυρίως ανοιχτού κώδικα) για την ανάλυση εικόνων υπολογιστή
Αυτό το μάθημα παρέχει παραδείγματα εργασίας.
Edge AI with TensorFlow Lite
14 HoursΑυτή η ζωντανή εκπαίδευση υπό την καθοδήγηση εκπαιδευτών στο Ελλάδα (διαδικτυακό ή επιτόπου) απευθύνεται σε προγραμματιστές μεσαίου επιπέδου, επιστήμονες δεδομένων και επαγγελματίες τεχνητής νοημοσύνης που επιθυμούν να αξιοποιήσουν TensorFlow εφαρμογές τεχνητής νοημοσύνης στο Lite for Edge.
Με το τέλος αυτής της εκπαίδευσης, οι συμμετέχοντες θα είναι σε θέση:
- Κατανοήστε τις βασικές αρχές του TensorFlow Lite και τον ρόλο του στο Edge AI.
- Αναπτύξτε και βελτιστοποιήστε μοντέλα AI χρησιμοποιώντας το TensorFlow Lite.
- Αναπτύξτε μοντέλα TensorFlow Lite σε διάφορες συσκευές αιχμής.
- Χρησιμοποιήστε εργαλεία και τεχνικές για τη μετατροπή και τη βελτιστοποίηση μοντέλων.
- Εφαρμόστε πρακτικές εφαρμογές Edge AI χρησιμοποιώντας το TensorFlow Lite.
Accelerating Deep Learning with FPGA and OpenVINO
35 HoursΑυτή η ζωντανή εκπαίδευση υπό την καθοδήγηση εκπαιδευτών στο Ελλάδα (διαδικτυακό ή επιτόπου) απευθύνεται σε επιστήμονες δεδομένων που επιθυμούν να επιταχύνουν εφαρμογές μηχανικής εκμάθησης σε πραγματικό χρόνο και να τις αναπτύξουν σε κλίμακα.
Με το τέλος αυτής της εκπαίδευσης, οι συμμετέχοντες θα είναι σε θέση:
- Εγκαταστήστε την εργαλειοθήκη OpenVINO.
- Επιταχύνετε μια εφαρμογή όρασης υπολογιστή χρησιμοποιώντας ένα FPGA.
- Εκτελέστε διαφορετικά επίπεδα CNN στο FPGA.
- Κλιμακώστε την εφαρμογή σε πολλούς κόμβους σε ένα σύμπλεγμα Kubernetes.
Distributed Deep Learning with Horovod
7 HoursΑυτή η ζωντανή εκπαίδευση υπό την καθοδήγηση εκπαιδευτών στο Ελλάδα (διαδικτυακό ή επιτόπου) απευθύνεται σε προγραμματιστές ή επιστήμονες δεδομένων που επιθυμούν να χρησιμοποιήσουν το Horovod για να εκτελέσουν κατανεμημένες εκπαιδεύσεις βαθιάς μάθησης και να το κλιμακώσουν ώστε να εκτελούνται σε πολλά GPU παράλληλα. .
Με το τέλος αυτής της εκπαίδευσης, οι συμμετέχοντες θα είναι σε θέση:
- Ρυθμίστε το απαραίτητο περιβάλλον ανάπτυξης για να ξεκινήσετε την εκτέλεση εκπαιδεύσεων βαθιάς μάθησης.
- Εγκαταστήστε και διαμορφώστε το Horovod για να εκπαιδεύσετε μοντέλα με TensorFlow, Keras, PyTorch και Apache MXNet.
- Κλιμακώστε την εκπαίδευση βαθιάς μάθησης με το Horovod για να τρέξετε σε πολλαπλά GPU δευτερόλεπτα.
Deep Learning with Keras
21 HoursΑυτή η ζωντανή εκπαίδευση υπό την καθοδήγηση εκπαιδευτών στο Ελλάδα (διαδικτυακό ή επιτόπου) απευθύνεται σε τεχνικά άτομα που επιθυμούν να εφαρμόσουν μοντέλο βαθιάς μάθησης σε εφαρμογές αναγνώρισης εικόνων.
Με το τέλος αυτής της εκπαίδευσης, οι συμμετέχοντες θα είναι σε θέση:
- Εγκαταστήστε και διαμορφώστε το Keras.
- Δημιουργήστε γρήγορα πρωτότυπα μοντέλων βαθιάς μάθησης.
- Εφαρμόστε ένα συνελικτικό δίκτυο.
- Εφαρμόστε ένα επαναλαμβανόμενο δίκτυο.
- Εκτελέστε ένα μοντέλο βαθιάς εκμάθησης τόσο σε CPU όσο και σε GPU.
Introduction to Stable Diffusion for Text-to-Image Generation
21 HoursΑυτή η ζωντανή εκπαίδευση (διαδικτυακή ή επιτόπου) από εκπαιδευτές απευθύνεται σε επιστήμονες δεδομένων, μηχανικούς μηχανικής μάθησης και ερευνητές όρασης υπολογιστών που επιθυμούν να αξιοποιήσουν το Stable Diffusion για να δημιουργήσουν εικόνες υψηλής ποιότητας για ποικίλες περιπτώσεις χρήσης.
Με το τέλος αυτής της εκπαίδευσης, οι συμμετέχοντες θα είναι σε θέση:
- Κατανοήστε τις αρχές του Stable Diffusion και πώς λειτουργεί για τη δημιουργία εικόνων.
- Δημιουργήστε και εκπαιδεύστε Stable Diffusion μοντέλα για εργασίες δημιουργίας εικόνας.
- Εφαρμόστε το Stable Diffusion σε διάφορα σενάρια δημιουργίας εικόνας, όπως inpainting, outpainting και μετάφραση εικόνας σε εικόνα.
- Βελτιστοποιήστε την απόδοση και τη σταθερότητα των μοντέλων Stable Diffusion.
Tensorflow Lite for Microcontrollers
21 HoursΑυτή η ζωντανή εκπαίδευση στο Ελλάδα από εκπαιδευτές (διαδικτυακή ή επιτόπου) απευθύνεται σε μηχανικούς που επιθυμούν να γράψουν, να φορτώσουν και να εκτελέσουν μοντέλα μηχανικής εκμάθησης σε πολύ μικρές ενσωματωμένες συσκευές.
Με το τέλος αυτής της εκπαίδευσης, οι συμμετέχοντες θα είναι σε θέση:
- Εγκαταστήστε το TensorFlow Lite.
- Φορτώστε μοντέλα μηχανικής εκμάθησης σε μια ενσωματωμένη συσκευή για να μπορέσει να ανιχνεύσει ομιλία, να ταξινομήσει εικόνες κ.λπ.
- Προσθέστε AI σε συσκευές υλικού χωρίς να βασίζεστε στη συνδεσιμότητα δικτύου.
Deep Learning with TensorFlow
21 HoursTensorFlow είναι ένα API 2ης γενιάς της βιβλιοθήκης λογισμικού ανοιχτού κώδικα της Go ogle για την Deep Learning . Το σύστημα έχει σχεδιαστεί για να διευκολύνει την έρευνα στη μηχανική μάθηση και να το κάνει γρήγορο και εύκολο στη μετάβαση από το πρωτότυπο της έρευνας στο σύστημα παραγωγής.
Κοινό
Αυτό το μάθημα προορίζεται για μηχανικούς που επιδιώκουν να χρησιμοποιήσουν το TensorFlow για τα έργα Deep Learning
Μετά την ολοκλήρωση αυτού του μαθήματος, οι εκπρόσωποι θα:
- κατανοήσουν τη δομή και τους μηχανισμούς ανάπτυξης του TensorFlow
- να είναι σε θέση να εκτελέσει εργασίες εγκατάστασης / περιβάλλοντος παραγωγής / αρχιτεκτονικής και διαμόρφωση
- να είναι σε θέση να αξιολογήσει την ποιότητα του κώδικα, να εκτελέσει εντοπισμό σφαλμάτων, παρακολούθηση
- να είναι σε θέση να εφαρμόσει προηγμένη παραγωγή, όπως μοντέλα κατάρτισης, δημιουργία γραφημάτων και καταγραφή
TensorFlow for Image Recognition
28 HoursΑυτό το μάθημα διερευνά, με συγκεκριμένα παραδείγματα, την εφαρμογή του Tensor Flow στους σκοπούς της αναγνώρισης εικόνων
Κοινό
Αυτό το μάθημα προορίζεται για μηχανικούς που επιδιώκουν να χρησιμοποιήσουν το TensorFlow για τους σκοπούς της αναγνώρισης εικόνων
Μετά την ολοκλήρωση αυτού του μαθήματος, οι εκπρόσωποι θα μπορούν:
- κατανοήσουν τη δομή και τους μηχανισμούς ανάπτυξης του TensorFlow
- εκτελέστε εργασίες εγκατάστασης / περιβάλλοντος παραγωγής / αρχιτεκτονικής και διαμόρφωση
- να αξιολογήσει την ποιότητα του κώδικα, να εκτελέσει εντοπισμό σφαλμάτων, παρακολούθηση
- να εφαρμόσουν προηγμένη παραγωγή, όπως μοντέλα κατάρτισης, οικοδόμηση γραφημάτων και καταγραφή
Natural Language Processing (NLP) with TensorFlow
35 HoursTensorFlow™ είναι μια βιβλιοθήκη λογισμικού ανοικτού κώδικα για αριθμητικούς υπολογισμούς χρησιμοποιώντας γραφικά ροής δεδομένων.
Το SyntaxNet είναι ένα νευρικό δίκτυο φυσικής γλώσσας επεξεργασίας πλαίσιο για TensorFlow.
Word2Vec χρησιμοποιείται για την εκμάθηση vector αντιπροσωπείες λέξεων, που ονομάζεται "word embeddings". Word2vec είναι ένα ιδιαίτερα υπολογιστικά αποτελεσματικό προγνωστικό μοντέλο για την εκμάθηση ενσωμάτωσης λέξεων από το πρωτότυπο κείμενο. Έρχεται σε δύο γεύσεις, το μοντέλο Continuous Bag-of-Words (CBOW) και το μοντέλο Skip-Gram (Κεφάλαιο 3.1 και 3.2 στο Mikolov et al.)
Χρησιμοποιείται ταυτόχρονα, το SyntaxNet και Word2Vec επιτρέπουν στους χρήστες να παράγουν μοντέλα Learning Embedding από την εισαγωγή της Φυσικής Γλώσσας.
Δημοσιογράφος
Αυτό το μάθημα απευθύνεται σε προγραμματιστές και μηχανικούς που σκοπεύουν να εργαστούν με τα μοντέλα SyntaxNet και Word2Vec στα γραφικά τους.
Μετά την ολοκλήρωση αυτού του μαθήματος, οι εκπρόσωποι θα:
- Κατανοήστε TensorFlow&rsquo·s δομή και μηχανισμούς εκμετάλλευσης
- να είναι σε θέση να εκτελέσει εγκατάσταση / περιβάλλον παραγωγής / αρχιτεκτονικές εργασίες και διαμόρφωση
- να είναι σε θέση να αξιολογήσει την ποιότητα του κώδικα, να εκτελέσει αποσπάσεις, παρακολούθηση
- να είναι σε θέση να εφαρμόσει προηγμένη παραγωγή όπως μοντέλα κατάρτισης, όρους ενσωμάτωσης, γραφικά κατασκευής και καταγραφή